

Força necessária p > Metal 16 > Borracha 0,0	oara causar uma 5 N)001 N	a deformação de 1º
Substância	α x 10 ³	β
	(°C)-1	cm ² /dina
Gases	4	1,0x10 ⁻⁶
n-hexano	1,1	16x 10 ⁻¹¹
Borracha	0,66	5,1x 10 ⁻¹¹
Ferro	0.03	7.0x 10 ⁻¹³

Para experimentos a pressão constante......
Energia livre de Gibbs:
$$G = H - TS = U + PV - TS$$
 (5)
 $dG = dU + PdV + VdP - TdS - SdT$ (6)
Combinando (4) e (6):
 $dG = TdS + fdl - PdV + PdV + VdP - TdS - SdT$
 $dG = fdl + VdP - SdT$ (7)
Da equação (7): $G = f(t, P, T)$
 $dG = \left(\frac{\partial G}{\partial l}\right)_{P,T} dl + \left(\frac{\partial G}{\partial P}\right)_{T,L} dP - \left(\frac{\partial G}{\partial T}\right)_{P,L} dT$ (8)
Comparando as equações (7) e (8):
 $\left(\frac{\partial G}{\partial l}\right)_{P,T} = f$ $\left(\frac{\partial G}{\partial T}\right)_{P,I} = -S$ $\left(\frac{\partial G}{\partial P}\right)_{T,I} = V$

Combinando (24) e (26), tem-se para "v" cadeias: $f = \left(\frac{\partial G}{\partial r}\right)_{p,r} \implies \Delta G_{el} = \frac{3\nu RT}{r_o^2} \int_{(r_o^2)^{1/2}}^{(r_o^2)^{1/2}} r dr$ Integrando e substituindo pela equação (25): $\Delta G_{el} = \frac{\nu RT}{2} \frac{r_i^2}{r_o^2} \left(\alpha_x^2 + \alpha_y^2 + \alpha_z^2 - \alpha_{x_o}^2 - \alpha_{y_o}^2 - \alpha_{z_o}^2\right) \quad (27)$ Onde : $\alpha_{x_o}^2 = \alpha_{y_o}^2 = \alpha_{z_o}^2 = 1$ (28) Não deformado!!!) Assumindo a razão de Poisson, ĸ, como sendo 1/2 (sólido incompressível): $\alpha_x \cdot \alpha_y \cdot \alpha_z = 1$ No caso de deformação unidirecional: $\alpha_y = \alpha_z = \frac{1}{\alpha} \frac{1}{\alpha}$ (29)

$$\Delta G_{el} = \frac{vRT}{2} \left(\alpha^2 + \frac{2}{\alpha} - 3 \right)$$
(30)

$$f = \left(\frac{\partial G}{\partial l} \right)_{T,P} = \left(\frac{\partial G}{\partial \alpha} \right)_{T,P} \left(\frac{\partial \alpha}{\partial l} \right)_{T,P} = \frac{\partial \left[\frac{vRT}{2} \left(\alpha^2 + \frac{2}{\alpha} - 3 \right) \right]}{\partial \alpha} \cdot \frac{\partial}{\partial l} \left(\frac{l}{l_o} \right)$$

$$f = \frac{\sigma \cdot A_o}{\alpha} = \frac{vRT}{l_o} \left(\alpha - \frac{1}{\alpha^2} \right)$$

$$\sigma = \frac{vRT}{V_o} \left(\alpha^2 - \frac{1}{\alpha} \right)$$
(31)
Considerando as equações (13), (14) e (15):

$$\int \sigma = \frac{RT}{v_{sp}M_c} \cdot \frac{1 - 2M_c}{M} \cdot \left(\alpha^2 - \frac{1}{\alpha} \right)$$
(32)
Tensão depende de três fatôres:

$$> \text{ Temperatura } (\uparrow T \Rightarrow \uparrow \sigma)$$

$$> \text{ Fator estrutural } (v/V \in M_c)$$

